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We discuss a Petrov-Galerkin mixed finite element formulation of the semiconductor continuity
equations on a rectangular domain. We give error estimates for equations that are in principle
degenerate in the singularly perturbed case. We give arguments that indicate that the method is
also effective in the singularly perturbed case. We develop a discretization that gives a higher-order
accurate solution for use in an a posteriori error estimator. © 1995 John Wiley & Sons, Inc.

. INTRODUCTION

The use of a form of exponential fitting for the semiconductor continuity equation
is suggested by the success of the Scharfetter—~Gummel discretization [1] in one di-
mension and variations on that discretization in two dimensions. Numerous derivations
of Scharfetter—Gummel type discretizations are given in the literature, for instance by
Selberherr [2], Markowich [3], Bank et al. [4], Brezzi et al. [5], and others. This article
extends a one-dimensional exponential fitting technique, discussed by Hemker [6], to the
two-dimensional context.

In Section II we introduce a model equation for the semiconductor continuity equations
and several bilinear forms, related to the coefficients in this equation. In Sections III
and IV we treat the discretization. In Section V we collect some technical results,
and in Section VI we derive two error estimates. These error estimates are based on
the techniques used by Douglas and Roberts [7]. The proofs in Section VI take all
characteristics of our special discrete system into account, in particular the quadrature
rule for the approximation of certain integrals in the discrete system. Note thaF the‘error
estimates in Section VI are degenerate if the problem is singularly perturbed, i.e., if t'he
convection dominates in the problem. On the other hand, an indication for good behavior
of the method for singular problems is that— for constant coefficients—it repro@ucgs the
solution C exp(—Bx; — Baxz) exactly. In Section IX, we develop an a posteriori error
estimator, and in the last section we discuss our findings.
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Il. EQUATION

We consider the following problem, find 4 € H*(Q)) such that
——div(l(grad u + uﬁ)) +yu=fin and
o

u=—g onaQ, (1

where Q is a bounded rectangular domain in R?. We impose the following restrictions
on the coefficients:

@ EWHQ) and JAER a=A>0inQ, @)
1 ew=a), 3)
a
B = (Bi.Bx)" with 8,8, € Wi(Q), 4)
y EWT(Q) and y=0inQ, (5)

where WT(Q), H*(Q2) are the usual Sobolev spaces [8], and
H(div, Q) := {r € L>(Q)*|div 7 € L}(Q)},

with scalar product

(o, T adiv.) = f o-rdu + [ diveo divedu,
Q 0

is a Hilbert space (see also Girault and Raviart [9] formula 2.15 in Section 2.2). We assume
that the equation has a solution and that f € L*(Q), g € H¥*(4 Q).

The stationary semiconductor continuity equations take the form (1). Here 8 corresponds
to the electric field, the term vyu corresponds to a linear approximation to the recombination
term, and 1/a corresponds to the electron or hole mobility. The exact correspondence
depends on the choice of scaling [10].

In order to formulate the weak mixed form of this equation, we use the following
bilinear forms

(s,z‘)=/Q stdu Vst € L2(Q),
a(a',1')=jQ ao 7vdu Y o,7 € H(dv, Q),
blo,t) = ]ﬂ B -otdy YV o€ Hdiv,Q), r € L3(Q),
cfs, 1) = fﬂ ystdu Y st € L3D),

(g, h) =[ ghd\r V g,h € L2(0Q).
Q)

Given these definitions, we see immediately that any solution u € H*(Q2) of (1)
generates a solution (o, u) € H(div, Q) X L?(Q) of

a(o,7) — (div 7,u) + b(7,u) = {g,7 - nyq) V 7 & H(div,Q), (62)
(div o,1) + c(u,t) = (f,1) Yit€ELQ), (6b)
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where

1
o= —;(grad u+ up).

In order to simplify the notation, we denote the Cartesian product of a normed linear
space E with itself by E in boldface type, E := E X E. We define

) 172
”(lu‘la IJ’Z)T“E = (Z “,LL,”’Z’;) V (MI’MZ)T E E
i=1

lil. PREPARATIONS

We introduce a partition of the domain and define the adjoint problem of (1), which we
use in the derivation of one of our error estimates. Next, we introduce several special
projections that are needed in the definition of our approximation spaces and in the
derivation of the error estimates. Finally, we give an error estimate for the projections.

A. Partitioning the Domain

We assume that our domain () is rectangular. On €}, we use Cartesian coordinates, with the
unit vectors e, and e; parallel to the edges of Q. Wedefiner; ;=7 -e;forr € L3(Q) and
x; = x - e; for x € R2. Before we treat our discretization, we define our approximation
space. We assume that our partition is the cartesian product of partitions

P={0=py<p <--<py =L, (7
and
0={0=q<q < <gqn=Ly} ®
of the sides of our domain. We define the index set K,
K={G+1/2,j+1/2)]i=01...,N = 1j=01,..., N, — 1},
with the obvious index pair for a given cell,
Qivin,j+rin = {xlpi <x1 < pisi,q; <x2 < gj+1}-

We define x, to be the center of (; and hy to be the diagonal of (), with the notation. Xk
for the characteristic function of Q. (The characteristic function of a set is the function
that is equal to one in all points of the set and zero elsewhere.) The edges of (), are the sets:

Fk,;,j—_—{XEﬁHX'ei:(xk+(j_I/Z)hk)'ei} fOfi=1,2,j=0,l. (9)

Xk,i,j 1s the characteristic function of edge Ty ;. So (i,j) = (1,0),(1,1),(2,0),(2, 1)
denote the left, right, bottom and top edges.
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B. Adjoint Problem

We use the following definition for the adjoint problem of (1) (cf. Douglas and Roberts [7]),
w € HX(Q),

—div(—l—gradw>+—ﬂ—-gradw+yw=fin Q, w=0 ondQ). (10)
! a

The adjoint problem is called regular, if there is a unique solution w for every f € L*(2)
and this solution satisfies ||[wlls2q0) = Cll fllLaq) for every f € L2(Q).

Throughout this article the upper case C, without a subscript, denotes a generic constant,
which may have a different value at each appearance.

The weak mixed form of the adjoint problem is:

(r,w) € H(div,Q) X L}(Q), (1)
a(r,o0) — (divo,w) =0 V o€ H(iv,Q)) and (11a)
(div 7,1) — b(r,t) + c(w,2) = (f,1) Ve L(Q). (11b)

Any solution w € H3(Q) of (10) generates a solution (—1/a grad w, w) of this problem.
If (10) is regular, then this solution satisfies [[wlly2) + 17y = Cll fllL2q)-

C. Projections

We introduce several local projections, and use these to define four global mappings, P,
P,, I1,, and II, that map function spaces to finite dimensional function spaces. First,
we define P[);] to be the orthogonal projection from L?({);) to the space of constant
functions on €, and we define P[T;; ;] to be the orthogonal projection from L*(T; ;)
to the space of constant functions on I’ ; ;.

We use P[)] to create two global mappings, P,: L*(Q) — L*(Q2),

Pof = 2 xePLQU() ¥ f €LXQ), (12a)
keEK
and P,: L2(Q) — L%(Q),
PuB = D xlPlU(B - eer + PIOL](B - e2)es) VB ELAQ).  (12b)

kek

Next, we introduce two mappings, based on P[I';; ;]. These have as their domain the
space X,

3 = {r € H(div, Q) |75, - nsq, € L(9Q;) V k € K}.

This space is similar to that introduced by Roberts and Thomas in formula (1.10) of their
report [11].

To simplify the definition of these mappings, we introduce local coordinates on each
cell €y,

X1 — Xk 1 1
L
. Ry 2 .
& = Xz*xk,2+_}_ (13)
hk,z 2
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The mappings are defined as follows:

2

Iy = Z Xk Z((l = e )P[Tei0l(m) + &PTe i 1(m)es (14)

kek i=1

2
M = Z Xie 2 (0 = G )PITh 0l (7) + &P i1 (7)e; (15)
=1

kek i=
where
exp(€r it i PIOUT(B)) — 1
G = exo PIO(BY) -1 P B 2 0.
E.i if P[4](B:) =0.

For II,7 we get the i" component on () by linear interpolation between the projections
of this component on the two sides orthogonal to e;. For II,7, however, we obtain the

same component by using an exponential function to interpolate between the projections
of this component on the two sides orthogonal to e;.

The following finite dimensional function spaces are now introduced as the ranges of
the above projections:

Vi = I(2), W, = P,(L*(Q)), and X, = I1,(2).

Vi X W, is the lowest order Raviart—Thomas—Nedelec space for rectangles. This space
and the above projections were described by Douglas and Roberts [7], Raviart and
Thomas [12], and, for & C R?, by Nedelec [13]. In this article, we use the usual space,
V, X W, as the trial function space and X, X W, as the test function space. In effect, we
use exponential test functions instead of the usual linear test functions. Thus, we obtain a
Petrov—Galerkin mixed finite element discretization.

D. Error Estimates for Projections

A lemma on the accuracy of our projections is now found. Considering the number and
diversity of articles on error estimates, e.g., the classical projection estimates from Ciarlet
and Raviart [14], this may seem superfluous, but we shall see that the relative simplicity
of the case under consideration makes it possible to derive sharp error estimates under
minimal assumptions.

Lemma 1. If f is a square integrable function with square integrable derivatives on a
rectangle Q = [0,h,] X [0, hy] with sides T\, = {hi} X [0,hy], To1 = [0, ] X {ha},
[l = {0} X [0, hy], and T = [0,h1] X {0}, then the following inequalities hold:

lf - PIQ)fllixe) = (k7 + 213)"llgrad fllLxa) - (162)
If s is a continuous function with domain [0, h,] and range [0, 1], then we have
Ilf = (1= TTLolf — STITy ) fll = k7 + 243)llgrad fllixa) . (16b)
If f € L*(Q), grad f € L*(Q), then
Il f = PIQIfll=@) =< (hi + ho)llgrad flli=(o)- (16¢)
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Proof. We start by proving the above inequalities for f € C'({2). We can then extend
them by the usual density argument to H'({)). To prove the first inequality, we write

If = PLOT Iy = f ! j hﬁ( — [ | Z:)f(x,y)—f(w,z)dwdz)za’xdy,

L

by definition,

fy) = fw,2) = /=' %(a,z)du + ]= %(x,b)da.

If we substitute this into the above expression, then we find

f = PLQIfI ) =

[’ll / ( fwilo j:o[/;“ gi(a z)da +[V 5£(x b)db]dwdz)zdxdy.

We apply the Holder inequality to the inner integrals and extend the integrations over a
and b, where appropriate,

If = PLOIfll ) <

]"” f ( :: Nof/oxillz) + hy’(/bh;(ﬂ(x b))2 )1/2>2a’xdy_

We use (|A] + |B|)* < 2(A% + B?) to write this as

Ill ’12
17 = POy =2 [ [ Blag/onli dx s

hy
+9 f hallof/axalR i dy
—
This reduces to,

If = PIQIfIRa0) = 28700f /01120y + 28200/ 0x2l o

Now, we consider the second inequality, (16b), we write,

= - s)H[F, olf = T[Ty ]2 =

hy 2
Lo ([ = st = 7000 + st - Jh1,Ndz) ddy.
We use partial derivatives to rewrite the expression,

f=(-s [Ty 0] f = sTO[T,, l]f”u Q) =

f /\ho(hz /22 l:l—s(x)){f —{-:*(a,z)da+fb;%]b:(x,b)db}

S()‘)u;. L 0.2y da + /;i g—i—(x,b)de dz)zdx dy.
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Using the Holder inequality we extend the integrals where appropriate, so that
If = (1= OUTelf = sTIT] fllia) =

12 ,

[ [ (st o [ (L ) )"
W oot < 17 [ (L) ) ) acas
0 Jymo \ P floxille) + b o o (6:0)) db dx dy.

We use (|A] + |Bl)? = 2(A% + B?) to write this as
Nf— (= Il = sOC ] fllEg) <

Moot (hy mraf ?
2 [ f <‘— lof/oxillq) + hzf (—(x,b)) db> dxdy,
=0 Jy=0\ hy b=0 \ 0b
which reduces to

Nf— Q- I 0 f - SH[Fl,l]f”i?(!l) = 2h%||3f/3x1||ilm) + 2030/ 9xa11 2 ) -

Lastly we verify (16c),

ey =t = [ Lagaar [ Lupa

So,

l hy hy
— fx,y) = fw,2)dxdy =
hlh2 x=0 Jy=0

1 h) fhz (jx af /y af
e — —(a,z)da + —(x,b)da) dx dy
hihy Jx=0 Jy=0\Ja=w Ba( ) b=: Ob ’

< (b + ho)llgrad fll-o)-

m
Note that the above inequalities imply
llo — ol = fpea%(zh;il + th,z)m“ﬂ”m(m» (17a)
lo — Mol = Tg}c(zhi,l + 2hf‘2)]/2||0'||ul(m, (17b)
le — Puulle) = Ipeﬁllz((zhil + 2h3 )" llullyo) (17¢)

for suitable u and o .

IV. DISCRETIZATION

We describe our discretization. The basic idea of mixed finite elements with a lowest
order Raviart—Thomas trial space and exponentially fitted test subspace for the vector
valued functions is complicated by the use of a quadrature rule, needed to keep the
M-matrix property for the system without Lagrange multipliers for nonzero y. This
quadrature rule is discussed in Section IVA. Another complication is the approximation
of the coefficients by piecewise constant functions, as described below. In Section IVB
we give the resulting discretization.
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We replace the coefficients a, 8 and 'y by two-dimensional step functions. To write our
modified problem in weak form, we need to define three new bilinear forms:

E(o-,r)=f o 7Paduy Yo,7rEZ,

Q

5(0‘,1):=[ to - PyBdp Voe S, € L3(Q),
Q

(s, 1) :*—'f stPpydu Vst € L2(Q).
0

The bar on the bilinear forms denotes that the coefficients are replaced by their cell-
wise averages. We then replace @ by @,, the subscript g indicates that a—not yet
specified—quadrature rule will be used in the evaluation of this bilinear form.

A. Quadrature Rule

We construct a quadrature rule @, ; by imposing the condition that, if &, 8 are constant,
vy =0, and the solution satisfies u = C exp(—B,x; — B2x2) + K, with C,K € R, then
the discrete solution should satisfy o, = Il,0- and u, = P,u. We see that for the u given
above o = —KB/a, so o is constant. We define «, separately for each basis function
M. j+1n Where

Si-1njr1m€1 € Qiipjrin

Nij+o1ir = 10 = Livinjrim)er € Qivin,j+1n,
0 elsewhere ,
and 7;4p,j, wWhere

Sivinj-1m€2 € Qicipjm1n,
Ni+1nj = (1- f(i+|/2,j~|/2))ez € Qi+1/2,j+1/2,
0 elsewhere .
We denote the set of all possible indices for the basis functions 5 by
E={e=(,j~1/2li=012...N,j=12...,N}J
fe=G-1/2,)li=12,...,N,,j =0,1,2,...,Ns}.
Our quadrature rule should satisfy the following condition:
Eh,l(a'a nr) = 5(0, nr) > (A)

for all constant ¢ and all r € E. Due to our assumption that the coefficients are constant,

we have @ = @ and b = b. The above condition guarantees that for constant coefficients
and constant o,

alo, ) = (,div 7)) + b(my,u) = @ (Mo, 7) — (Ppu, div 77)

+ b(Th,Phu) V Th (S Xh,
and we also have

(div o, 1) = (div II,o,1) =0 V1€ LXQ).
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So our conglition (A) on @, , is sufficient for our purposes. We now select the quadrature
rule by taking the following definition for @, ;,

2
ap (o, 7) = Z Z () P[Q] () (P[Q4] (&, DPIT 1) (oim))
kEK =1
+ PO J(1 = & )P[Tri0l(omi) . (18a)
We introduce a new problem dependent norm on X,

2
lzalle = > > (@) (PLOU] (& )PITkia (1)
k€K i=1
+ PLOJ( = & )P[Ti0l(mi D' (18b)
From this point onward, we take @, = @y ;.

B. Discrete System
We approximate the solution (o, u) of (6) by (o7, up) € V4 X Wy, where
@ (04, 7) — (up,div 1) + b(7,u,) = (7 - Ma0,.8) VTEX,, (19a)
(div o, 1) + Tup,t) = (f,1) VieEW,. (19b)

If we use @ instead of @,, then this means that our discrete problem does not always
yield an M-matrix for u,. Consider, for instance, the corresponding discretization on a
uniform mesh with mesh width 4 in one dimension with & = 1, B8 = 0, and y constant.
If ayh?/6 > 1, then the off-diagonal elements of the discretization matrix for u,, after
elimination of o, through static condensation have the same sign as the elements on
the diagonal.

The idea of using linear trial functions and exponential test functions was used by
Hemker for singularly perturbed two-point boundary problems [6]. For the one-dimensional
case, the introduction of exponential test functions follows from the requirement that it
must be possible to approximate the Green’s function of the problem by the test functions.

In the following sections, we prove that the solution of our discretization (19) is an
O(h) approximation to the solution of our original problem.

V. TECHNICAL RESULTS

This section contains some technical results, collected for later reference.

Lemma 2.
i, oI, = I, (20a)
O, oI, =1I,, (20b)
(div o, Pyt) = (div ,o,1) ¥V o € 3,1 € LX(Q), (20c)
[, 7 7o =Hu7 Han V7T EZ. (20d)

Proof. Both mappings are based on the same projections P[Ty ; ;] so (20a) and (20b)
are trivial.
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To prove (20c) we use a special case of Green’s theorem:

[ avoan =3 EW o1y (o) - PTGl (00)
[oN

i= hk i

i=1
If we combine this with the definition of Il,, the proof of (20c) is complete. Equation (20d)
follows immediately from the definitions. =

Lemma 3. If o € X and we define ar,; = P[T'y ;0] (07) and by ; = P[Ty i1 ]1(ay), then
the following inequalities hold for |11, olli 2o, and |11, ol q,):

3 2 B 2 2 Q :
ML S a + 0h) = Mol = 202 S @, 4 07, 1w
i=1

i=1
1Mo, < 2ol < 120,00 q,) - (21b)

Proof. Formula (21a) follows immediately from

(IN,o, 11,0) = f — & dar: + &b ) du.
i= IkEk Q

Next, we derive (21b) from

(ﬁha',ﬁha):ZZfQ = Gedai + Goibe ) dp.

i=1 keEK
We see immediately that

] (0= Gdaws + GbePdu s [ 20 = gl + 222,57 du =
Q O

2]{) (1 = &ag, + Goibldp = 2u(Q) (P[] — Seiag ; + PLO] (&b )
This implies (21b). u
Lemma 4 shows, that @ is L*(Q)-bounded and L2(Q)-elliptic.

Lemma 4. Let «a EW[(Q), a=A>0€ Q and alo, ) = fsz Pya)o - 7du
VY o.r € LYQO), then

a(o,7) < |lalli-ollollolirlizg Y eo,re LAQ), (22a)
and
a(T, T) = A”’T”LI(Q) v TE LZ(Q) . (22b)
Proof. From (2) it follows that
/ adu
< ﬂ____ < ”a .
() =),
together with the definitions of P and @, this implies (22a) and (22b). ]
We introduce the minimum mesh width hmin and the maximum mesh width Amaxs
Ponin = min min | il (23a)
Rax = max max Ay i - (23b)

€K i=1,2
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A. Properties of ag

We discuss the properties of the quadrature rule @, and assume that . a, = ay,, where @,
1s glven by (18a). We also discuss the interaction between I1, I1, and @,. We show that
, is L2(Q2)-bounded on V}, and we also show that @, is L2(Q2)-elliptic on V), and X;,.

Lemma 5. Ifo,7 € 3, then

a,(Myo, I 7) = a (I, 7,11, 0) = a,(0,11,7) = a,(1,0.7) = Eq(o,ﬁ,,r) =
Ziq(l:[ha,f) =a,(Mo. 1,7), (24a)

S =4 1 ~ ~ A =t b)
lell-olTell = a,(l,0,1,0) = 7 ale Me) = = Mol g, (24b)
a,(Ilyo, I,7) < 6llall- o I orlluz o) 1T r (24¢)
Al 7} = @ (7, 7)) < llall o7l (24d)

Proof. The definitions of II,, I1 »» and @, imply (24a). Inequality (24b) follows im-
mediately from (18a), (18b), and (21b). To prove (24c), we need some auxiliary variables,
ar; = P[Tri0l(0), by = P[Tki1](0), cki = P[Tki0l(7), and dii = P[Tyin](7).
Cauchy—Schwarz is used twice, we obtain

L8]

a,(lo, 7)) = > PLOT () () ) D (PIUIA = Gdag ek + PIOUWT (G )by idy, o)

kEK i=

IA

11
(ai.f + bl%.i))

™M

S Pl @@

kEK i

x(”

[

12
Z[P[Qk](l = L) e+ P[Q"](g"'i)zd%‘i) '

i=1

We use
P[] (f)? = PLOI(S)

to rewrite the term in ¢ and d, and we use (21a) to replace the term in a and b by
||Hh0||[,2(m,

N ol
Eq(nhO',HhT) = k;{ P[Qk](a)ﬂ(ﬂk)6 ,U—(Qk)llz

1n
(Z(P[Qk]((l i) )CL, + PLO]((&i) )dlii)) .

We see immediately that this implies
a,(Il,o, f,r) = 6”a”L“(Q)”Hho'“I}(Q)”ﬁhT“h-

This proves (24c). Inequality (24d) follows immediately from (18). L
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B. Difference between a and a,

For our error estimates, we need an upper bound for the difference between the value of
a(o, 7) and that of @,(ay, 7) for o, € Vi, 7 € H'(Q). As we already know from (16c¢)
(see also Lemmas 8 and 9) that

la(o, 7,) — alo, 7)) = 2hmullallvz)lla il llmlliig
an estimate for |a(o, 7,) — @,(o, 7,)| suffices. Such an estimate is derived in Lemma 6.
Lemma 6. Let 7, € X, and o € H'(Q)), then
[a(a, ) — a,(a,m)| = 2llalli-hmaxllTallallolng) - (25)

Proof. To simplify our notation, we introduce a;; = P[Tr i 0l(7), bii =
P[Fk,i,l](fh)’ Tri0 = P[Fk,,"()](O','), and Oki1 = P[rk’,‘,l](ﬂ',‘). We prove the lemma
for o with 0,0, € C'(Q), and extend by density.

We consider the difference between the two forms on one subdomain (), with

P[O](a) =

| ﬁ o md = w00 Y (PN - G )P (0070
k =]

2
+ Pl (& )P[Th i1 (0ri7hi) ‘=I /Q Z((1 = Godaki T eibri)oidp — p(Qy)
¢ s

[\/]N

X (PLOUI(1 = L )P[Tr o) arioi) + PLQUT (G, )P[Tk i1 1(be i) | =

1

i

fﬂ = Gei)axioi T bk ioi — PIOW](1 = G daw, iow o
k=]
—P[QA](fklbkﬂkzldﬂ‘ ‘f Z((l $ridai(or = opi0)

+ Lk ibkilor — ok i) dp ’ .

The application of the Cauchy—Schwarz inequality to this last term and insertion of a
yields the following result:

2 12
[a(o, 7)) — @ (o, )| = hmax”a“L"(Q)”Th“h( Z Z Z llo: — Ui,k,j”%ﬁ(ﬂk)) .

kEK i=1 j=0
If we take s = j in (16b) then this implies

12
@, ) — (o, m) < ||aan<m|mnh(Z 482, |lgrad a,~nmm)

i=1

= 2hmacllall=@llmallallor gy

Because C'(Q)) is dense in H'(Q), the formula also holds for oy, o, € H!(Q). ]



A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD . .. 513
VI. ERROR ESTIMATES

We use the standard estimates for |[o0 — II,ollL2q) and llu — Pjulliz), as described
in Section IIID, to reduce the problem to deriving bounds for [|P,u — uyll 2y and
|IIT,o — ollLq). We discuss two possible derivations of an O(h) error bound. The first
needs the assumption that Ap,, is “small enough,” while the second places a condition on
an approximation of the discrete version of the adjoint problem.

A. Errors Due to Approximation of the Bilinear Forms

As preparation for the derivation of a priori error estimates, we derive some upper bounds
on the errors caused by the piecewise constant approximation of the coefficients a, 3,
and y. We use the following well-known notation. If V and W are normed linear spaces,
then L(V, W;R) is the space of bounded bilinear forms on V and W, the standard norm
of an element b € L(V,W;R) is given by

b(v,w
oLy, w:r) = sup sup ——l—(—~—)L
VEV wEW ”V”v"W”w

Lemma 7. If o € Wi (Q), then
lla = @llLmi o), wl-tyr) = 6hmadlallvzq)

where (Xp, ||-ll,) is a normed linear space with, as elements, the elements of X, but with
{1, as norm.

Proof. From Egs. (16¢) and (21b) it follows that

la(o, ) — alor, 7)| = dhmaxllallwz @l Lzl 7alls -

When combined with Lemma 6, this implies

lla — @,llLm @, R = 6hmallalivg@) -

u
Lemma 8. If B € W[ (Q), then
16 = billuo), o) r) = 4AmalBllwz @) -
Proof. This follows immediately from (16c¢). n
Lemma 9. If y € W\ (Q), then
lle = lluez@.zerr) = 2hmadlyliwi) -
Proof. This follows immediately from (16c). m

B. An a priori Error Estimate

The following two lemmas show nice properties of our discretization, which are needed
to derive the error bound.
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Lemma 10. Let 7 € 3, t € L*(Q), then

b(M,7,t — Pyt) — (div 1,7t — Pyt) = 0. (26)
Proof. A straightforward calculation shows that P,(8) - 1,7 — div 1,7 is constant
on ;. From this, (26) easily follows. =

Lemma 11. [f (o, u) is a solution of (6) and (o, uy) is a solution of (19), then
(divie — @), Ppt) + c(u — uy, Ppt) =0 Y 1 € L*(Q). (27)
Proof. We take (19b),
(div oy, Pyt) + Tluy, Pyt) = (f, Ppt),

€ is derived by orthogonal L*({),) projection, so this implies
(div oy, Ppt) + cup, Ppt) = (f, Pyt).

It we subtract this from (6b), (div o, Pyt) + c(u, Pyt) = (f, Pyt), then we find (27). m
We are now ready to give an estimate for ||I1,o — o],

Theorem 1. If (o, u) is the solution of (6), (o, uy) is the solution of (19) and (or,u) €
H'(Q) X H*(Q), then there exist positive real numbers C and D such that

12
C= " max(L, llellws ., 1Bllwzo). l1yllws @) max(1, ol o), Nullia@) . (28)

D=2 1Bl ’

A
o ~ o4ll; < Chpy (ITT00 = o3yl + 1Pru — upllizi0))
+ Dllyo — o llullPru — uplliq, .

Proof. According to (24d), A|lI1, (o — o)l =a,(0 — o4, 1,(0 — o). This is
the starting point for the derivation of our error bound. Equations (6a) and (19a) imply that

a0 = o, M0 — o) = @, — a)(o, (o0 — o)) + alo, 11, (o — o))
- a0, (0 — a7))
=@, — a)(o. (o - a,)) + (div Iy ( = o), u)
= (Mo = a),u) + (g4 - [T,(0 — o))
+ oMl ~ ow),u) = (div Iu(o — 03), up)
= (g.myg - (0 - o)
=@, ~ a)(o. (o ~ 0v)) + [div (o — 03), )20
= - B)(ﬁh((f = o), u) — B(ﬁh(a - o), u)
+ b(Iu(o = 03), ) — (div [T, (o — o), up),
where we give b — b, a, — a, etc., their obvious meaning. If we use Lemma 10, we find

Ao = o)l = @, = a)(e. Tl\(0 ~ a}) — (b — ) (I (o ~ o), )

+ (div ﬁh(o' = 03),Ppu — uh)LZ(Q) - E(ﬁh(o' = 03), Pyu — uy).



A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD . .. 515
If we use (20b) and (20c) to prepare the way, then the application of Lemma 11 to this
expression results in
Al — o)} = @, - a) (0. T4(a — 03)) — (b — b)(Tu(a — o), u)
— c(u = up, Pyu — up) = b(Ilu(o — @), Pyu ~ up).

As 7 is nonnegative according to (5), we may add c(Pju — uy, Pyu — uy,) on both sides
of the inequality, we find

Ao — oI} + c(Phu — wy, Pru — wy) < (@, — a) (0. 14(0 — oy))
~(b = b)(My(o = o4, u) = (¢ =) (u = Pyu,Pyu — up)
— b(M,(o — o), Phu — uy).

We use Lemmas 7, 8, and 9 to reduce this to
Al (0 — o2 = hpuBllellwo)llollne, + 4l Bllwr o llulli@) I, (00 — a)ll

+ 2hmlYllwzllu = PrulliollPau — uplliz)

+ 201 Bll-o (o = o)llullPau — unllz) -
Note that for all u € L3(Q), llu = Ppullixo) = llullixay, and [Tl = [Tl =

Next, we prepare for the second part of our error estimate.

Lemma 12. If (o, u) is the solution of (6), (o, uy) is a solution of (19), and (7, q) is the
solution of the adjoint problem for an arbitrary right-hand side p € L*(Q)), then

(div 7, Pyu — up) — b(z,Pou — up) = alo, M,7) — Eq(a'h,ﬁ,,f)
+ b =Db) 7 u) + 0(Hyr — 7, Pyu — uy) + (b — b) (7, Pyu — wy).
Proof. We start by replacing b by b,
(div 7, Ppu — uy) — b7, Pyu — up) = (div 7, Pyu — up) — b(7, Pyu — uy)
+ (b = b) (7. Phu — uy).
We use (20a) and (20c) to get
(div 7, Pyu — up) — b(7, Pyu — uy) = (div 0,7, Pyu — u,) — b(I1,7, Pou — uy)
+ b(yr — 7,Pyu — up) + (b — b)(7,Pyu — uy),
Lemma 10 to find
(div 7, Pou — up) — b(7, Ppu — up) = (div 7w — wp) — b7, u — up)
+ b7 — 7, Py — uy) + (b — b) (7, Pyu — uy),
and Egs. (6a) and (19a) to produce
(div 7, Pyu — up) — b(7,Pru — up) = ala, M,7) — (g,fI;,f S M) — Zz“q(a'h,I:IhT)
+ (g, 7 - mq) + (b — B){Tpr,u) + b7 — 7,Pou — up)
+ (& = b)(7,Pru — uy).
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Lemma 13. [f (o, u) is the solution of (6), (o, uy,) is a solution of (19), and (7, w) is the
solution of the adjoint problem for an arbitrary right-hand side p € L*({}), then

c(Pyw,u — up) = —a(r, (00 — 03) + b(IL4(0 = o0),w — Ppw).

Proof. From Lemma 11,
c(Pyw,u — up) = —(div(e — o), Pyw),

and according to (20b) and (20c) we can rewrite the right-hand side,

C(P;,w,u - uh) = —(diV H},(O‘ - O'h),PhW).

We wish to use__EcL. (26) from Lemma 10 to remove P,. To do this, we must add and
subtract a term b(II,(o0 — o), Pyw) on the right-hand side of our equation. We apply
Lemma 10 and gather terms in b together,

c(Phw,u - u;,) = “(diV ﬁh(O' - O'h),w) + _b-(ﬁh(a' - O’h),w - Phw).
Finally, we use (11a),
c(Paw,u — uy) = —a(r,Mu(o — o3) + b(I14(00 — o0),w — Pyw).

Theorem 2. Assume the adjoint problem (11) has a unique solution for all square
integrable right-hand sides, and assume that there is a constant C, such that, if (7,w)
is the solution of (11) for a given right-hand side f, then

Il + lIwllng) = Coll fllea) -

Now, if (or,u) € H'(Q) X H*(Q) is the solution of (6), and (o, uy) is a solution of (19),
then there are constants

0<C,D,E =4C.(1 + 2hmay) max(llallw=@), IBllw=@). 17llw=q))
such that

Pru — uplliog) = Chmux(lulliz) + Nlolluq) + Dhang T (o0 — o)l
+ Ehmax”Phu - uh“LZ(Q) .

Proof. If we have an estimate for (P,u — u,, p) for all p € L*({)), then we can use

(p,1)
fell2 ) = sup s
PELQ), p#0 ”P”Lzm)

to find ||Pyu — uylliz). We use the regularity of the adjoint problem (11) to find a
solution (7,w) € H'(Q) X L2(Q)) of (11) for a given right-hand side p € L2(Q). We
may write

(p,Pru — uy) = (div 7,Pyu — uy) — b(7,Ppu — uy) + c(w, Pyu — uy).



A PETROV-GALERKIN MIXED FINITE ELEMENT METHOD ... 517

If we apply Lemma 12, we find
(p,Puu — up) = a(o, M,7) - Eq(ah,ﬁh'r) + (b = b)(II,7,u)
+ (7 — 7, Pyu — uy) + (b — b) (7, Py — uy)
+ cw — Ppyw, Pyu — uy) + c(Pyw,Ppu — uy).
Using Lemma 13, we find that
(p. Phu — up) = alo, 1,7) = @ (0, T,7) + (b — B) ({7, 0)
+ b(Myr — 7, Pyu — uy) + (B — b) (7, Pru — uy)
+ cw = Pyw,Pyu — up) — a(7, (0 — o))
+ —b_(ﬁh(ﬂ' — o), w — Ppw),
which can be written as
(p,Pru — up) = (a — Zz‘q)(a,ﬁhr) + a,(o — o, I,7) + (b — B) (I ,7.u)
+ b7 — 7,Pyu — u) + b — b) (7, Pyu — uy)
+ c(w = Puw, Pyu — up) — a(z, o — o))
+ b(I (0 — o), w — Pyw).
We use (24a) to write this as
(p.Phu — wp) = (a — @,) (0, Ty7) = (a = @) (7. Tu(e = o)) + (b — B) (7. 0)
+ b(y7 — 7,Pyu — uy) + (b — b) (7, Pru — uy)
+ c(w — Pyw, Pyu — up) + b(Il (00 — o), w — Pyw).

Use of the regularity of the adjoint problem (11), Lemmas 7, 8, and 9, and the projection
error estimates (16a,b,c) leads to

IPhu = uplliz) = Co(1 + 2hmu)2hmanllellwi @) (lollaq) + (o — o)l
+ 4C, hpa || Bllwr ) (1 + 2hna) llullz @) + 2C, hoax | Bl 1Prue = uplliza)
+ 2C, hax Pena 1Y lwz ) 1Phu = upllizio) + 18llL- (e — ol -
This can be written as
1Py — upllizi) = Chma(l + hmay) T Dhar(1 + hma) 1T (0 = o)l
+ Ehgay(1 + o) 1Phue — upllize) -

If Apax is small enough, Theorems 1 and 2 together give an O(hma) error estimate.

An important limit on Am,x is implied by the form of the estimates in Theorems 1 and
2. The main problem is that large values of llallwz@), IBllws @), and llyllw=) decrease
the range of hy,y for which the estimate is valid. Specifically, in Theorem 2 we need to
bring the term with coefficient E to the left-hand side, so we need, for example,

4hpa Co (1 + 2hm,,) max(llellwz @), |1 Bllwz@) 17 llwi@) = 1/2.

Note that C,, the condition of the dual problem, may also depend on a.
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If the above inequality holds, then Theorem 2 implies
1P — uplliz) = 2Chaa(llulli) + lolluigy) + 2Dhgllo — olly.

with C,D as in Theorem 2. Insertion of this estimate in Theorem 1 leads to a similar
problem. Here we need an assumption of the form

1Bl
A

16Amax Co (1 + 2k, max(llallwzq), 1BlIlwz @), 1y lw=q)) =1/2

to bring the square of the error from the right-hand side to the left-hand side. Theorem 1
then gives
”ﬁho' - 0’/1”;2, = 2Khmax(”l:[ha' - o'h”h + 2Chmax(”u“L3(Q) + ]IO'”H'(Q))
+ 2Dhmax”ﬁha - o'lx”h),

with K the constant C from Theorem 1 and C, D as in Theorem 2. If [T, — o4 lls is
smaller than hp.,, then we find

”I:Iha' - 0'/1”%1 = 2Khmux(hmax + ZChmux(nul

) + llollai@) + 2D .

i.e., an O(hy,y) error estimate for ||IT1,0 — o1, and, if it is larger than iy, then we
may divide terms in the right-hand side either by [|II,o — oll, or by Ap.y, so

”ﬁha - O'h”h = 2Khmux(1 + 2C(”“”L2(O) + ”U”H'(Q)) + 2Dhmax)a

s0 again we find an O(Ap,,) error estimate for ||II,00 — o,

C. Another Approach

To improve our estimate of [[P,u — uyllL2q), we consider the adjoint of the discrete
problem. This means, that we look for (7,,v,) € X, X W,, such that

ay(th, o) — (div op,vi) =0 Yo, €V, (29a)
(div 7, 1) = B(Tity) + T, ty) = (fo1h) Y 1, € Wy (29b)

We call this system regular, if there is at least one solution for each f € P,(L*({2)), and
that all solutions for a particular f satisfy

Hrulln + Wil = CHPLFllL2q) (29¢)

with C independent of the mesh size. This is a somewhat less stringent regularity condition
than that given for the continuous adjoint problem (10). Note, that 7, € X, so 7, is a
piecewise exponential function on Q, for i = 1,2.

An example of a general condition under which this system is regular is the following:

a=A>0, vy =Cy >0, and AC, — lIBll}=q) = C, > 0. (30)

To show this, we need the following relations:

Py
/n ’ia) T T — Pr(B) - vy + Pu(y)vpvidp = 3D
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/Q P—h((—x—)(n - 2P(B) 1% )2 + (P;:(?’) - Ph(B)z)Vth du = (31a)

4 Py(a) " Pu(a)
. Ph(ﬁ) " Th : _ Ph(B)Z Th *° Th
fﬂ Ph(?’)("h mZP,,(a) ) + (Ph(a') P(7) ) y du . (31b)

We know, that (div I1, e, Pyt) = (div I1,0, P,1), so, if we take the sum of (29a) and
(29b) with o = Il 7, and ¢t = v,, we find

ay(m, ym) = b(7,vi) + Sy va) = (f,vn). (32)
According to (24a), a, (7, IL,7,) = Eq(ﬁ w7, LLp7y), and by (24b) we have

%E(ﬂhd, ﬁhO') = aq(ﬁhv', I':Iho') .

Hence,

P
[Q hia) 7o T — Pu(B)  mvn + Po(y)vivedu = fn Pi(flvidu. (33)

This expression is identical to (31), so (31a) is smaller than ( f,v,); combined with (30),
this implies

G

”y allz) = I fllta) - (34a)

In the same way, we find that (31b) is smaller than ( f, v,); together with (30) and (34a),
this implies

C
(A_C]—)E mullz) = Il - (34b)
0

From (32) we see that this implies
Al = ag(mn, m) < [ fllizlivalle) + BlIL=llmallzo vallio)
2
+ Iylle=@llvalliz o) »

this implies that there is a C such that
Izl = Clifllaa) -

Theorem 3. If we assume that (29¢) holds, then

NPru — upllig) = haacBllallwz@llollao) + 201Blwzo) + lyllwsllullz) .
(35)

Proof. We use (29b),
(Pou — wy, Prf) = (div 7, Pott — up) = b7y, Ppu — up) + T(Ppu — up,vi).

Hence, according to Lemma 10 and the definition of ¢,

(Pyu — up, Pypf) = (div 7p,u — up) — b7y, u — uy) + cu — up,vp).
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We use (6a) and (19a) to find

(Pyu — llh,th) = (div 7y, u — up) — (b — b)(7h,u) — b(7p, u) + E(Thauh)
+ E(u - uh,vh)
=@ - b) (7 u) + alo, ) — (o) + (€ = ¢) (u,vn)

+ c(u = up,vn).
According to (24a) and Lemma 11, this implies

Pou — up, Prf) = (b = b) (7, u0) + (a — @) (o, 7,) + ag(Ilyo — o4, 73)
+ (€ = )u,vy) — (div(Ilo — o), vh) .

Now, (29a) implies
(Phu — up Pyf) = (b = b) (74, u) + (a — @) (o, 7)) + (€ = ) (u,vi).

Finally, we use Lemmas 7, 8, and 9 and (29c¢) to obtain our error estimate (35). |

VII. VERIFICATION OF THE LOCAL MAXIMUM PRINCIPLE

We use the discrete adjoint problem to show that, for this quadrature rule, the matrix after
elimination of & by static condensation is an M-matrix. The discrete adjoint problem is
defined in (29).

We assume a regular uniform mesh. We denote the matrix corresponding to (29), after
elimination of o7, by A. We see that the matrix A has nonpositive off-diagonal elements.
We shall show that A is an M-matrix. To do this, we use Theorem 5.12, Chapter 5,
page 124 of [15]. This theorem states that, for irreducible matrices with nonpositive off-
diagonal elements, the M-matrix property is equivalent to the existence of a positive vector
with a nonnegative image that is not identically zero. In our case, the vector (1,1,...,1)"
has such an image, because all row sums are nonnegative, and any row corresponding to
an edge or corner has a positive row-sum.

The fact that the matrix A is irreducible follows from Theorem 3.6 [15], which states
that, for a square matrix, irreducibility is equivalent to its di-graph being strongly
connected. Inspection shows that the di-graph of the matrix under consideration is indeed
strongly connected.

According to Theorem 5.6 [15], AT is an M-matrix, too. This implies that the discrete
equations for the original uy, satisfy a local maximum principle.

The M-matrix property implies that the system for u; has a unique solution. From the
form of the equations for o7, we see that a given u;, induces a unique o,. This implies that
our system is always uniquely solvable. A quick calculation of the coefficients of uy, in
(19a) shows that, for constant coefficients and large B, i.e., with large convection diffusion
ratios, we get a relation between o, and uj,, where the “upwind” point is weighed more
heavily. If B/ remains bounded and we go to the limit |B,| + [B,] — o, then we get
a first-order upwind scheme. This suggests that the scheme, in which the coefficients are
continuously dependent on this ratio, remains useful close to such a limit.
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Viil. A POSTERIORI ESTIMATOR

We use a special quadrature rule and obtain a higher-order discretization. We seek an
ay.3(+,-), that minimizes @ — @, 3. To do this, we choose a special quadrature rule for
each a(-, ), where 1 is one of the basis functions introduced earlier. Due to the nature
of our test functions, the quadrature rule is essentially a one-dimensional rule.

A. Derivation of the Rule

For 1; j+1n, we proceed as follows. We replace the two-dimensional integral by a repeated
integral, we integrate exactly in the e, direction, and then use a three-point rule to
approximate the remaining integral. As nodes for the last integration, we take either the
centers of I';_15 4120, Uit j+12,0o @and 'y 12 5412, Or, if we are at a boundary, the
edge center on the boundary and the two next closest edge centers. We choose the weights
as follows:

a,(Il o, ﬂi,j+1/2) = a(o, 77i,j+l/2) >

for all o with x;-components that are second-order polynomials in x;, i.e., for all
a,b,c € R, and all 7, ;+12, we have

ay(IT((ax? + bx; + c)ey),ni j+1n) = a((ax] + bx; + c)el, M j+in)-

In a similar manner, we define the rule for 9,11 ;-

B. Estimator for the Local Discretization Error and a Lower
Bound for the Global Error

We use this rule to obtain an a posteriori estimator for the local discretization error and a
lower bound for the global error. It is immediately obvious that

@30, m,) = @i(o,m,) = Ohn,),
where r is a possible index-tuple. Moreover,

alo.m,) — s, n,) = O(hy,),
if o is smooth enough. If

[@3(pr-m,) — (divey, = B -, wi)l = K,
then we have either
Will=) = K,

or

HpullL=) = CK .
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We see immediately that, if (o7, u;) is the solution of (19) with @, = @y, , then
Eh.l(nho' - O'Innr) - ((le - ﬁ)ﬂn Phu - uh) = O(hk) s

with k = 1 or 2 depending on the coefficients in (1) and
@30 — opm,) — (div — B)n., Ppu — up) = O(htsd) + @n(om,m,)
= ap 3o, m,).

So, (ani — an3) (0w, m,) is an estimate for the local discretization error. Moreover, this
implies that there is a constant C such that

k+2
hmax .

o — aulli=) + 1Pru — wlli=) = Clan (ow,m,) = ans(ow, ) + O(

If we assume that

Mo — oulli- + 1P — unlli=) = O(hly,) .
we see that, for hn., small enough,
1 . _
o - (Th”u(m + [|Ppu — Mh“mm = _2'C|ah,l(0'ha7lr) - a;z,z(o'h,"lr)l-

This provides a lower bound on the global discretization error. We expect the solution for
@3 to be two orders of magnitude more accurate than the solution for @, ;.

IX. NUMERICAL RESULTS

We consider problem (1) with
u = tanh(a(V2x; — (V2 = 1)/2 + x2))),
B, =100, B, = 100v2, I, =030,

F= _div(grad u + up)
- .

The smallest upper bound on hy,, now follows from the second condition given in
Section VIB. This condition reduces to

3200hmex Cr(1 + hmayx) < 1/2,

a = 100, g =uli,

so, neglecting the factor 1 + hp,,, for the theorems to apply we would need hpy,, =
1/(3200C,).

We find the following results for the two discretizations. The directional components of
the error vectors for the fluxes were the equal to the accuracy given.

The log, of the errors for a, = a, ,
Meshwidth logallPyu — wyll | logall(Tlyo — @) - e/l | logll(Il,or — o3) - el
1/4 -13 -13 —1.1
1/8 -1.8 -17 -14
1/16 =25 -2.4 -2.1
1/32 =36 -34 —-3.1
1/64 =51 -5.0 ~4.6
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The log, of the errors for a, = a, ;

Meshwidth logallPyu — uyll log|l(ITyor — 03) - el log,[I(IT,or — o) - exll
1/4 -2.2 -2.9 —2.6
1/8 -35 —-4.0 —3.6
1/16 -5.4 —6.1 =5.6
1/32 —8.0 -9.2 —8.7
1/64 —-10.5 -13.0 —-12.4

We see that the order of convergence is indeed higher for the second method. We also
see that the difference in order for the fluxes approaches 2. Deviations from the expected
order may be caused by the steepness of the solution relative to the mesh.

To test the stability of the low order method, we applied it to problem (1) with

with

for ¢ = 1000 and « = 1000000, with

[

u = tanh(a(V2x, — (V2 = 1)/2 + x2))),

B = a, ,Bg=a/\/§,

Q)

g=M!aQ,

_div(grad u + up)

f:

This gave the following results for & = 1000.

a

The log, of the errors for a, = @,

Meshwidth logollPyu — uyll log; |(IT,or — @) - el logx|l(T,or — o) * el
1/4 -0.8 -1.0 -0.8
1/8 -1.0 -1.2 -0.8
1/16 -13 -1.4 -1.0
1/32 -1.6 -1.7 —1.2
1/64 -2.0 —-2.0 -1.5

And for a = 1000000.

The log, of the errors for a, = @,

Meshwidth logallPyu = wyll | logall(Il,or — o) - el | logll(I,o — 03) - esll
1/4 -0.8 -1.0 -0.8
1/8 -10 -1.2 -0.8
1/16 -13 —14 -1.0
1/32 -15 -1.6 -1.2
1/64 -18 -1.8 -14

The bound given in Section VIB reduces to
320 hax Cr(1 + Bmay) < 1/2,
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80, neglecting the factor 1 + Ay, for the theorem to apply we need Apax = 1/(32aC,).
Evidently, this criterion is not met; nevertheless, convergence occurs, because the scheme
reduces to an upwind discretization in cases of large «, i.e., for small diffusion constants.

X. CONCLUSIONS

The Petrov—Galerkin mixed finite element method with exponentially fitted test functions
for the fluxes has several nice properties. For instance, just as for a finite volume method,
if the true solution o is divergence-free, then the same holds for o,. Furthermore, we have
a formal a priori error estimate, and, after elimination of ¢, by static condensation, the
two-dimensional discretization results in an M-matrix for u,. We can extend the method to
three dimensions without additional difficulties. Section IX suggests that the scheme with
the three-point quadrature rule @, 3 can serve as a source for a posteriori error estimates.
To judge the effectiveness of the method for singularly perturbed problems is very difficult.
However, the fact that it incorporates exponential fitting, copes well with the exponential
solution of the constant coefficient case, and approaches a two-dimensional upwind scheme
if the convection goes to infinity suggests that the method based on @, can be applied
to such problems.
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